If sinθ + 2cosθ = 1, find the value of 2sinθ - cosθ.
Answer:
2
- It is given that
sinθ + 2cosθ = 1
⇒ (sinθ + 2cosθ)2 = 12 ....... [On squaring both sides] - Now, add (2sinθ - cosθ)2 to both sides of equation
⇒ (sinθ + 2cosθ)2 + (2sinθ - cosθ)2 = 12 + (2sinθ - cosθ)2
⇒ sin2θ + 4cos2θ + 4sinθcosθ + 4sin2θ + cos2θ - 4sinθcosθ = 1 + (2sinθ - cosθ)2
⇒ 5sin2θ + 5cos2θ +4sinθcosθ-4sinθcosθ= 1 + (2sinθ - cosθ)2
⇒ 5(sin2θ + cos2θ) = 1 + (2sinθ - cosθ)2
⇒ 5 = 1 + (2sinθ - cosθ)2
⇒ (2sinθ - cosθ)2 = 5 - 1
⇒ (2sinθ - cosθ)2 = 4
⇒ 2sinθ - cosθ = ± 2 - As sinθ + 2cosθ = 1, 2sinθ - cosθ will always be positive.
Therefore, 2sinθ - cosθ = 2